117 research outputs found

    Challenges and strategies for recruitment of minorities to clinical research and trials

    Get PDF
    Minority populations are largely absent from clinical research trials. The neglect of these populations has become increasingly apparent, with escalating cancer burdens and chronic disease. The challenges to recruitment of minorities in the United States are multiple including trust or lack thereof. Keys to successful recruitment are responding to community issues, its history, beliefs, and its social and economic pressures. The strategy we have used in many low-income, sometimes remote, communities is to recruit staff from the same community and train them in the required basic research methods. They are the first line of communication. After our arrival in the Texas Rio Grande Valley in 2001, we applied these principles learned over years of global research, to studies of chronic diseases. Beginning in 2004, we recruited and trained a team of local women who enrolled in a cohort of over five thousand Mexican Americans from randomly selected households. This cohort is being followed, and the team has remained, acquiring not only advanced skills (ultrasound, FibroScan, retinal photos, measures of cognition, etc.) but capacity to derive key health information. Currently, we are participating in multiple funded studies, including an NIH clinical trial, liver disease, obesity, and diabetes using multiomics aimed at developing precision medicine approaches to chronic disease prevention and treatment

    Species and population specific gene expression in blood transcriptomes of marine turtles

    Get PDF
    Background: Transcriptomic data has demonstrated utility to advance the study of physiological diversity and organisms’ responses to environmental stressors. However, a lack of genomic resources and challenges associated with collecting high-quality RNA can limit its application for many wild populations. Minimally invasive blood sampling combined with de novo transcriptomic approaches has great potential to alleviate these barriers. Here, we advance these goals for marine turtles by generating high quality de novo blood transcriptome assemblies to characterize functional diversity and compare global transcriptional profiles between tissues, species, and foraging aggregations. Results: We generated high quality blood transcriptome assemblies for hawksbill (Eretmochelys imbricata), loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) turtles. The functional diversity in assembled blood transcriptomes was comparable to those from more traditionally sampled tissues. A total of 31.3% of orthogroups identified were present in all four species, representing a core set of conserved genes expressed in blood and shared across marine turtle species. We observed strong species-specific expression of these genes, as well as distinct transcriptomic profiles between green turtle foraging aggregations that inhabit areas of greater or lesser anthropogenic disturbance. Conclusions: Obtaining global gene expression data through non-lethal, minimally invasive sampling can greatly expand the applications of RNA-sequencing in protected long-lived species such as marine turtles. The distinct differences in gene expression signatures between species and foraging aggregations provide insight into the functional genomics underlying the diversity in this ancient vertebrate lineage. The transcriptomic resources generated here can be used in further studies examining the evolutionary ecology and anthropogenic impacts on marine turtles

    Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects and tissue-specific enrichment of eQTLs

    Get PDF
    We performed genome-wide meta-analysis of lipid traits on three samples of Mexican and Mexican American ancestry comprising 4,383 individuals and followed up significant and highly suggestive associations in three additional Hispanic samples comprising 7,876 individuals. Genome-wide significant signals were observed in or near CELSR2, ZNF259/APOA5, KANK2/DOCK6 and NCAN/MAU2 for total cholesterol, LPL, ABCA1, ZNF259/APOA5, LIPC and CETP for HDL cholesterol, CELSR2, APOB and NCAN/MAU2 for LDL cholesterol and GCKR, TRIB1, ZNF259/APOA5 and NCAN/MAU2 for triglycerides. Linkage disequilibrium and conditional analyses indicate that signals observed at ABCA1 and LIPC for HDL cholesterol and NCAN/MAU2 for triglycerides are independent of previously reported lead SNP associations. Analyses of lead SNPs from the European Global Lipids Genetics Consortium (GLGC) dataset in our Hispanic samples show remarkable concordance of direction of effects as well as strong correlation in effect sizes. A meta-analysis of the European GLGC and our Hispanic datasets identified five novel regions reaching genome-wide significance: two for total cholesterol (FN1 and SAMM50), two for HDL cholesterol (LOC100996634 and COPB1) and one for LDL cholesterol (LINC00324/CTC1/PFAS). The top meta-analysis signals were found to be enriched for SNPs associated with gene expression in a tissue-specific fashion, suggesting an enrichment of tissue-specific function in lipid-associated loci

    Complex patterns of direct and indirect association between the transcription Factor-7 like 2 gene, body mass index and type 2 diabetes diagnosis in adulthood in the Hispanic Community Health Study/Study of Latinos

    Get PDF
    Abstract Background Genome-wide association studies have implicated the transcription factor 7-like 2 (TCF7L2) gene in type 2 diabetes risk, and more recently, in decreased body mass index. Given the contrary direction of genetic effects on these two traits, it has been suggested that the observed association with body mass index may reflect either selection bias or a complex underlying biology at TCF7L2. Methods Using 9031 Hispanic/Latino adults (21–76 years) with complete weight history and genetic data from the community-based Hispanic Community Health Study/Study of Latinos (HCHS/SOL, Baseline 2008–2011), we estimated the multivariable association between the additive number of type 2 diabetes increasing-alleles at TCF7L2 (rs7903146-T) and body mass index. We then used structural equation models to simultaneously model the genetic association on changes in body mass index across the life course and estimate the odds of type 2 diabetes per TCF7L2 risk allele. Results We observed both significant increases in type 2 diabetes prevalence at examination (independent of body mass index) and decreases in mean body mass index and waist circumference across genotypes at rs7903146. We observed a significant multivariable association between the additive number of type 2 diabetes-risk alleles and lower body mass index at examination. In our structured modeling, we observed non-significant inverse direct associations between rs7903146-T and body mass index at ages 21 and 45 years, and a significant positive association between rs7903146-T and type 2 diabetes onset in both middle and late adulthood. Conclusions Herein, we replicated the protective effect of rs7930146-T on body mass index at multiple time points in the life course, and observed that these effects were not explained by past type 2 diabetes status in our structured modeling. The robust replication of the negative effects of TCF7L2 on body mass index in multiple samples, including in our diverse Hispanic/Latino community-based sample, supports a growing body of literature on the complex biologic mechanism underlying the functional consequences of TCF7L2 on obesity and type 2 diabetes across the life course
    corecore